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Abstract

Apfloat is a C++ arbitrary precision arithmetic package. Multiplicatioagdane using Fast
Fourier Transforms for O(n log n) complexity. The transforms are done as Numbeeticheor
Transforms to avoid round-off problems. Three different moduli are used for optimal memory
usage. The final result is achieved using the Chinese Remainder Theorem. THenadgane
optimized for very high precision (more than 100 000 digits). The package is written to be
easily portable, but also includes assembler optimization in critical pastarfous

processors for maximum performance. The software is released as fraad@dree for
non-commercial use.

This document and the software are locatedat@at/www.apfloat.org/
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Legal Notice

This program (the apfloat source code and documentation) is freeware. This mepms that
can freely use, distribute, modify and compile it, but you can't sell it or any part of it.
Basically you can do anything with it, but the program or any part of it will alwayzbée f
That is you can't charge money or other valuables or services for it.

Although you can use this program freely, it would perhaps be considered to be good manners
to give the original author credit for his work, if this program is ever used for anytrefig us
or remarkable.

The author takes no responsibility whatsoever for any damage or harm that couldaesult fr
using this program. The program has been thoroughly tested, so using it should be fairly safe
However, executing it as root is perhaps not a very good idea.

Once more (a standard disclaimer):

THIS SOFTWARE IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIID,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PRODUCT IS WITH YOU. SHOULD THE PRODUCT
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERWQ,
REPAIR OR CORRECTION.

IN NO EVENT WILL MIKKO TOMMILA, THE AUTHOR OF THIS SOFTWARE, OR
ANY OTHER PARTY WHO MAY HAVE REDISTRIBUTED THE PRODUCT AS
PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISIG OUT
OF THE USE OR INABILITY TO USE THE PRODUCT (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PRODUCT TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HCER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

1. Introduction

The original idea for this program got started from the author's personal iimecakiulating
Tto as many decimal digits as possible as fast as possible. It's difficuligmarany (other)
reasonable use for this program. Calculations like this can of course be used foedrampl
test a computer system's reliability since a single error in one ari¢chimsgtuction will

render the rest of the calculated digits totally wrong. There could be a bug in thenprogr
also.

Use of this package has been made as simple as possible so that the user's ne&d for spec
customization and knowledge of the inner structure of the program is minimized. Diespite
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simplicity the program is nearly as efficient as what would be achieved witimtasd
tricky programming.

The author is aware that there exist several other similar multiprecisikages (like [11]
and [12]). This program was written because of the author's personal interest inghe subj

All comments about the program and especially bug reports should be sent by e-mail to the
author (Mikko. Tommila@apfloat.org).

2. Compiling the Library

First unpack the compressed source file and the appropriate makefile package for your
compiler: djgpp, bcc32, ve, Linux or general UNIX gcc, or just any general C++ compiler
(the makefile is for gcc, so you may want to change that). Then simptyakenib

If you use a UNIX system, you may need to modify the makefile to tell the compiler for
example to enable integer multiplication and division instructions or to set long lescd-

bit (if you use the 64-bit version). Simply add the required options toRhg = line in the
makefile. On most platforms, however, you should be able to compile the code without any
changes. The file readme.1st has more troubleshooting hints.

3. Using Apfloats

Using the apfloat library is simple. After compiling the library you only need thddndile
apfloat.h plus the compiled library. In each file you plan to use apfloats in you should always
#include "apfloat.h" . Then simply write a program like

#include <iostream>
#include "apfloat.h"

using namespace std;
int main(void)
apfloat x = 2;

X.prec(1000);
cout << sgrt(x) << endl;

return O;

}

and compile it with the apfloat library (apfloat.a or apfloat.lib) you created before

3.1 Constructors

You can construct an apfloat from an integer, a double, a character string or another apfloa
Integers have infinite precision by default (actuaekyrFFFFFF base units in a 32-bit

address space), doubles about 16 decimal digits and strings the precision of thengthing le
One base unit is 2®r 9 decimal digits in 32-bit implementations, 19 digits in 64-bit
implementations and 15 or 7 digits in the floating-point implementations (doubles or floats



correspondingly). For example:

apfloat a = 5; /I Infinite precision
apfloat b =5.0; // Precision is about 16 decim
apfloat ¢ = "123.456789012345678901234567890";

als
/I About 30 decimals

The constructors have the precision as the second optional argument. For example:

apfloat x = apfloat(5, 1000); /I Precision
apfloat y = apfloat(1.5, 2000); // Precision
apfloat z = apfloat("123", 3000); // Precision

3.2 Arithmetic Operations and Functions

The standard arithmetic operations

is 1000 digits
is 2000 digits
is 3000 digits

are overloaded for the apfloat class. Also the following functions are overloaded:

invroot(x, n) // Inverse nth root (using Newton's i
root(x, n) // Integer nth root (inverse of invro
sqrt(x) I/l Square root (optimized)

cbrt(x) I/l Cube root (optimized)

pow(x, n) // Integer power

floor(x)  // Floor function

ceil(x) /I Ceiling function

abs(x) /I Absolute value

modf(x, *i) // Splits to integer and fractional p
fmod(x, y) // x moduloy

agm(x,y) // Arithmetic-geometric mean
log(x) /I Natural logarithm

exp(x) /I Exponential function

pow(x, y) /I Arbitrary power X y
sin(x) /I Sine (included in apcp
cos(x) I/l Cosine (included in apcp
tan(x) /l Tangent (included in apcp

asin(x) /I Inverse sine  (included in apcp
acos(x) /I Inverse cosine (included in apcp
atan(x) /I Inverse tangent (included in apcp
atan2(x, y) // Angle of (x, y) on the complex pla
sinh(x) /l Hyperbolic sine

cosh(x) /I Hyperbolic cosine

tanh(x) /I Hyperbolic tangent

asinh(x) /I Inverse hyperbolic sine

acosh(x)  // Inverse hyperbolic cosine
atanh(x)  // Inverse hyperbolic tangent

Division uses the invroot function.

There is a functiopi(prec)  which givesrt calculated tqrec

teration)
ot)

arts

[x.h)
Ix.h)
[x.h)
Ix.h)
[x.h)
Ix.h)
ne (in apcplx.h)

digits.



There are also stream input and output operators, so you can for example

apfloat x = "3.1415926535";
cout << X;

This outputs the number in a floating-point style number, like

0.0000000031415926535€9

If you want a prettier output (no exponent, all the digits), there is a manipulator:

cout << pretty << x;

will output

3.1415926535

3.3 Member Functions

Apfloats have the following member functions:

int sign(void);

void sign(int newsign);

long exp(void);

void exp(long newexp);
size_t prec(void);

void prec(size_t newprec);

int location(void);

void location(int newlocation);
void unique(void);

void swapto(char *filename);
void swapfrom(char *filename);

Thesign()  function returns the sign of the number (1, 0, or —1 for positive, zero and
negative numbers correspondinghign(s)  sets the sign to s.

exp() correspondingly returns and sets the exponent. Note that the exponent can only be set
in multiples of the number of digits in one base unit.

prec() returns and sets the precision. There is a constant namedE , which can also
be used. It's the precision integers are set to by default.

location() returns and sets the location of the data in the mantissa of the number. It can
have one of the constant values defined in apflosEMORYor DISK . There's no reason to

use this function and moving too big numbers to memory can cause the program to abort or
crash unexpectedly.

unique() ensures that the data of the number is a unique copy. Due to the pointer structure of
the program more than one number can point to the same data. There should be no reason to
ever use this function.
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swapto(char *filename) "swaps" the number to the specified file. That is, the number is
saved to disk and deleted from your program (the number becomes uninitialized). The
function is implemented so that if the number already resides on disk, this function does very
little (just appends the number's member fields to the data of the mantissa) agd is ve
efficient. This is an useful function for saving numbers to disk for e.g. transferrimg the
between programs. It is far more efficient than printing and inputting the numbde\i®fi
streams.

swapfrom(char *filename) "swaps" the number from the specified file, that is loads it
from a file where a number was saved previously witipto() . The specified file is
essentially deleted from disk. Again, if the number is very big and should by defaildt oesi
disk, this function is very fast.

Mostly you will only need therec()  function.

3.4 Complex Numbers

Complex arithmetic can be done with tipeomplex data type. The necessary declarations
are in the file apcplx.h. All the apcomplex functions are compiled in the apfloaylibrar

Apcomplex numbers relate to apfloats just like standard C++ complex numbexgaelat
doubles. An apcomplex number is constructed from two apfloats: the real part and the
imaginary part. For example:

apcomplex z = apcomplex(0, "1e1000");

All the mathematical functions are also overloaded for the apcomplex type, las sir@am
input and output operators. Also the standard C++ complex manipulators (real, imag, conj,
norm and arg) and the polar constructor are overloaded.

The real and imaginary parts of an apcomplex number can be directly accessed as the
members re and im. For example:

z.im.prec(100);

The apcomplex class also hasex() member function, which returns the precision of the
number. The precision cannot be set this way, it must be set explicitly via the meenaed
im.

Note that in order to use the real trigonometric functions (sin, cos, tan and theirshwaae
must include apcplx.h, since these functions are calculated via complex functions.

There are some examples of complex arithmetic in the file cplxtest.cpp.
3.5 Integers

Integer arithmetic can be done with Hpnt  data type. The necessary declarations are in
the file apint.h. All the apint functions are compiled in the apfloat library.



Apint numbers relate to apfloats just like standard C ints relate to doubles. An apint mimbe
an arbitrary precision integer. For example:

apint i = 100;

All the arithmetical operations are overloaded for the apint type, including the meduld
%=0perators and the shifting operators &nd>> ). Also the stream input and output
operators are overloaded. Apints are always output with full precisiopréttye  modifier
is used for the output). Arithmetical operators with other arbitrary precisionypasare
also overloaded. Conversion from apint to apfloat should happen automatically when
necessary. The precision of an arbitrary precision integer is naturallysahfizite and it
cannot be changed. Also the arithmetic with apints works with exact precisiors alvimgy is
obviously required for integer division and modulus.

The following mathematical functions are implemented for the apint class:

pow(x, n) Il Integer power

abs(x) /I Absolute value

div(x, y) /I Splits to quotient and remainde r, returns apdiv_t
factorial(n)  // Factorial

gcd(x, y) /I Greatest common divisor

lem(x, y) /l Least common multiple
powmod(x, y, m) // Integer power modulo a modulus

There are some examples of arbitrary precision integer arithmetic iitethrgtest.cpp.

3.6 Rational numbers

Arbitrary precision rational arithmetic can be done withajtetional data type. The
necessary declarations are in the file aprat.h. All the aprational functiocsnapded in the
apfloat library.

An aprational number is constructed from two apints: the nominator and the denominator. For
example, the following code declares the rational number 2/3:

aprational r(2, 3);

All the elementary arithmetic operations are overloaded for the aprationaasypee the
stream input and output operators.

The nominator and denominator of an aprational number can be directly accessed as the
members nom and den. For example:

cout << r.nom;

As the members of the aprational class (the nominator and the denominator) ars, iht#be
of them have infinite precision. This can't be changed. You can get a floating-point
approximation of the rational number with the member funcetpprox(prec) , which

returns an apfloat with the desired precigigre . You can mix apint and aprational numbers
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in arithmetic operations, but when you are using apfloats with aprational numbers, you should
always use explicit floating-point approximations of the rational numbers witinéheber
functionapprox().

Because rational numbers are not uniquely defined, unless the nominator and the denominator
have no common factors, this arises some questions after every arithmetioopgidone.

Should the nominator and denominator be reduced so that they have no common factors? As
this can be quite tedious and sometimes is not necessary, there is a static vaeattder
calledautoreduce . By default it is set toue , which means that after every operation the
nominator and denominator are reduced to the smallest possible numbers. If it is set to

false , this reduction is not done and the nominator and denominator can grow unnecessarily
big. This can speed up things, if it is known that the nominator and denominator will have no
significantly large common factors. You can still manually reduce the ratiomabber to the

smallest possible numerator and denominator by calling the member fuadticst) . The
reduction simply first calculates the greatest common divisor of the nominator and
denominator and then divides the nominator and denominator by the gcd. Because this can be
highly inefficient, it is recommended to always setditereduce =~ parameter to false if it is
feasible.

The functionpow(x, n) is overloaded for the aprational class (for the parameéter

There are some examples of rational arithmetic in the file rattest.cpp.

3.7 Things to Note

- When the numbers are stored on disk, the program will create temporary files in the
current directory. The files are named xXxXxxxxx.ap, where XXXxXxxxX is a nustdnting
from 00000000. Naturally you should have permission to write files in the current
directory.

- Remember to set integers to a finite precision before doing arithmetic onvtiiemwill
create an infinite decimal expansion (ldgt(2)  or 2/3). For example

apfloat x = 2;
cout << sqrt(x);

will exhaust virtual memory or result in a crash. Instead define the precisioa in t
constructor:

apfloat x = apfloat(2, 1000);
cout << sqrt(x);

or afterwards, like

apfloat x = 2;
X.prec(1000);
cout << sqrt(x);

- It probably doesn't make much sense to construct high-precision apfloats from numbers
with infinite binary expansions using the constructor from a double. For example
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apfloat x = apfloat(1.3, 1000);

will be correct only to at most 16 digits, not 1000. This is because the number 1.3 cannot
be presented exactly in base two with a finite number of bits (which is the caseouhen y
use a double). Depending on your compiler there might be an error of adbutittDany
doubles (like 0.5). Instead you should use

apfloat x = apfloat("1.3", 1000);

- The compiler will probably give a lot of warnings when you compile the code. This is due
to the structure of the apfloats. Since an apfloat only contains a pointer to the aetual dat
and only pointers are exchanged in constructors and assignment operations, temporary
objects will be used in suspicious constructors. For example

apfloat x = apfloat(2, 1000);
cout << sgrt(x) << endl;

will use a temporary apfloat. The first line constructaginat(2, 1000) . On the
second line it's copied to the parameter that gossttp . If all the data was copied a lot
of time and space would be wasted. Only a link to the actual data is added and then later
removed at the function return, so much time is saved. A temporary sbjegt  is
created. It is then output to cout. Then the temporary object is destroyed. There is nothing
wrong with this, but you'll get a warning.

- This package is designed for extreme precision. The result might have aiteveds)
than you'd expect (about 10) and the last few (about 10) digits in the result might be
inaccurate. If you plan to use numbers with only a few hundred digits, use a program like
PARI (it's free and available frofp://megrez.math.u-bordeaux.fr ), or a
commercial program like Mathematica or Maple if possible.

3.8 Using Some Other Base than Base 10

If you want to do calculations in some other base than decimal (base 10) aseadb@

function. Note that you can't change the base between calculations (or you shouldn't, since it
will result in a crash). That is, your code should delete all the apfloats createdsfore

changing the base. Thus it's a good idea to change the base in the beginning of your program
and then not change it after that. For detailed instructions refer to the fileiandbe

package.
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4. Classes and Data Structures

datastruct

size : size_t
location : int
gotdata : bool
position : size_t
blocksize : size t
fileno : int

modint

etdata

gutdatag modulus : rawtype
readydata() data(] value : rawtype

cleardata()

openstream()
closestream()
resize() fstream
relocate() fs
capture()
release()

apfloat

prettyprint : bool

sign() ——
exp() nlinks : int

prec() ap sign .: int
location() 1.n exp : Iopg
unique() prec : size_t
swapfrom()
swapto()

apstruct

Figure 1: Class diagram

Practically all the work the program does is done on the datastruct class. Thedattses
the mantissa of the number, that is all the significant digits. The data isedtlesough the

getdata()  andputdata() functions. The data itself can reside either in memory or on
disk.

When a function wants to use the data of the mantissa, iyealsa(position, size)

It returns a pointer to the data. If the number was located in memory, it only returns the
pointer to the beginning of the data plus the parampeteion . If the number was on disk,

a buffer of sizeize is allocated and the data from the appropriate position in the file is read
to the buffer. Then the address of the buffer is returned. Thus the data will be accessed the
same way whether it is located in memory or on disk.

When the function is done with manipulating the data, it paltata() . If the number was
located in memory, putdata does nothing since the function already changed the data in the
right position. If the number is located on disk, putdata writes the data to the right file
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position and frees the memory that was allocated for the buffer.

Correspondingly there also exist functioesiydata(position, size) and

cleardata() . Readydata only readies the buffer for writing data to the position (with
putdata() ), but nothing is assumed of the previous contents of the data in that position.
Cleardata just deallocates the buffer that was previously allocatedewdiita() for
reading purposes only.

The datastruct class also naturally includes the data size and the location td.the da

The datastruct class includes only the raw data of the number. The apstructdiaiseds
from the datastruct class. It includes all additional data about the number: sign,néxpone
precision and number of links to the data.

The apfloat class, the only part visible to the end user, only contains a pointer to an.apstruct
This way apfloats can be used effectively just like normal floating-point nunbErsHi.

Every time a number is passed to a function as an argument or assigned (the = operator) t
another variable a copy is made of the number. If all the data (possibly tens of m&gabyte
was copied every time, a huge amount of time and space would be wasted. This is why
copying apfloats means only that the pointer is copied and the number of links in the data is
increased by one. If the number needs to be changed (for example by changing the precision
with theprec())  member function), an original copy is first created withuifigue()

function. When an apfloat is destroyed, only a links is removed from the data. If the number
of links to the data is zero, then the actual data is destroyed. All arithmetidmpeedivays
create a new (temporary) apfloat, so this method works very well (and it's celgnplet

invisible to the user).

Some arithmetic operations, like addition, subtraction and multiplication also Hemfithe
pointer structure. If the arguments (the pointers) to the operation are identicalithers
are known to be equal. Especially multiplication becomes squaring, which is a lot faste

Since multiplication of apfloats (the most intensive part of the program) is done using
Number Theoretic Transforms (see appendix A), the data is stored as the moslint clas
Modints are integers, but the arithmetic operations are overloaded so that thetaridhm
always done modulo the global variable modint::modulus (or sometimes modulus). This
makes coding the transform functions very simple and intuitive, yet very effectite due
inline functions. Even assembler optimization is possible because gcc supportexibky fl
inline assembler statements (see section 7).

The program also has a “bigint” data type, which is basically only used for temporary
calculations in the Chinese Remainder Theorem (see appendix B). Bigints lyeasnays
of unsigned integers. Relatively short arithmetic (like 96-bit) is fastesy bggints, since the
hardware in general directly supports them.

Sometimes really big blocks of modints need to be allocated (tens of megabytds). Mos
compilers or operating systems seem to handle allocation of very big memory blaeks qui
strangely. When the allocated block is freed, the memory is not actually freed, letitosom
just marked free. If a larger block is allocated right after that, the previallstyated block
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cannot be re-used and almost double the necessary memory gets allocated. Tsaliiti r
either running out of memory or extreme swapping and heavily degraded performance when
running at the limits of available memory (which should be the case).

Before any operations on the apfloat class are done, certain initial functions must be
performed. These are done in the functipinit() . To automatically call this function at

the beginning of the program, and the functipdeinit() at program exit, which cleans

up the things thatpinit() did, a dummy class is constructed in the file init.cpp. This class,
apfloatinit, has only one instance and it is static. The constructor for this oy calls

apinit() and the destructor cakgdeinit() . Thus at the beginning of the program, before
main() IS run, the constructor for this static apfloatinit instance is of course callied. Af
main() has finished, the destructor for the instance is called. Sapitit@ and

apdeinit() functions are performed automatically.

All the data in the program is allocated and deallocated dynamically during ruwitimée

new[] anddelete[] operators. However due to the memory allocation problem mentioned
above a slightly different approach was implemented. At the program start, in therfunc
apinit) , @ memory block of maximum size (power of two or three times a power of two) is
allocated. The pointer is in the global varialtekspace . It's freed at program exit, that is
whenapdeinit() is called. Fortunately, C++ makes possible to overloadeihg and

delete]]  operators for the modint class so that every time a block larger than the global
variableMemorytreshold (see section 5) is “allocated”, a pointer to workspace is returned.
It's never deallocated witlelete[] . If the workspace is “allocated” twice, the program

aborts with an assertion failure. This should never happen, however, since normally numbers
larger tharmemorytreshold ~ are stored on disk. Only one (large) buffer at a time is allocated
in memory for intermediate computation results. Blocks smallernleanrytreshold ~ are
allocated normally with the rawtypeisw[] anddelete[] operators. This is why you

should never change a numbertation() unless you know exactly what you are doing.

5. Adjusting System Parameters

The file apfloat.ini (must be in the current directory) can contain some (optioraation
about your system. It's highly recommended that you check the values especially &nyou pl
to do very long calculations. It can have the following lines:

Ramsize=41943040

This is your computer's memory size in bytes. An estimate of the program andngperati
system code size is subtracted from this value to get the maximum availabteoptwe or
three times a power of two block size.

Cachel 1size=8192
The processor's level-1 cache size in bytes. This has no great effect on thegmedosu if
you don't know it, you should probably leave it to 8192.

Cachel2size=262144
The processor's level-2 cache size in bytes. This has no great effect on thegmedoisn
you should probably leave it alone unless you are an optimization freak.
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Cacheburst=32

The cache's burst size (or a cache line size) in bytes, typically set to 32 or ibethisyhas
no big effect. The cache parameters are only used in matrix transposition imsifiertna
algorithms (see appendix D), which takes only a very small part of the total prGgrdm
time.

Memorytreshold=131072

Longer data blocks than this are stored on disk by default. When the numbers are stored in
memory, the program runs slightly faster. Don't set it to too high or the prograswagl or

run out of memory.

Blocksize=65536

Efficient disk 1/O block size (in modints), should be Memorytreshold . Since a lot of data

is read from the disk in reverse order, you should probably set this to a quite large value for
good performance.

NProcessors=1

Number of processors in a multiprocessing system. For normal, single-proceksmp des
computers the default value of 1 should be used. Not all versions of apfloat use this
parameter. Currently multithreaded versions of the six-step Fast Numbertith€mesform
are implemented for Win32 threads and Posix threads. Also a multiprocessing pragram f
calculating pi is included in the apfloat package.

All of the above parameters can also be specified as environment variables. The entironm
variables should be in uppercase (for exanip®|SIzE). The environment variables

override the settings in apfloat.ini, if both exist on a system.

A MAXBLOCKSIZEenvironment variable can also be specified, which will override the setting

calculated fronRAMSIZE. This variable can be used to directly specify the maximum
available memory block size, in modints. It should be used with caution.

6. Multiplication of Very Large Numbers

This chapter was inspired by [5].

A multiplication is essentially a convolution. For example, 0 411 é 2
consider the numbers 123 and 456 presented as the 61 62 63
sequences {1, 2, 3} and {4, 5, 6}, respectively. The linear + o+
convolution is presented in figure 2. If we want to do the 5+Dl 5+[2 53

calculation using a circular convolution (and we will), the |, 47 4n a3
sequences must be zero-padded to the length of the sum 41 133 282 27 18
the lengths of the operands. In this case the sequences 5 6 0 8 8
would then be {1, 2, 3, 0, 0, 0} and {4, 5, 6, 0, 0, 0}. Figure 2: Convolution

From the convolution sequence carries must be calculated, since the numbers of the sequence
can be larger than the base used. For example if base 10 is used and the result from the
convolution is the sequence {4, 13, 28, 27, 18, 0}, it must be converted to a sequence where
all the numbers are less than 10. Since each number in the sequence represents dne “digit”
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the decimal expansion of the result, the 18 in the least significant position astaathg that

the least significant digit is 8 and 1 should be added to the next digit. It's 27, so the second
least significant digit of the result is the lowest digit of (27+1) which is 8, anddlisd to

the third least significant digit etc. Basically this is the standard additheme, as shown in
figure 2.

The convolution can be calculated very effectively using Fast Fourier TransfoonmsaN
complex Fourier Transforms break down due to round-off errors with transforms longer than
a few million (according to [5]), so the transforms are done in the field of integehsiona
primep wherep is of the formkN+1 andN is the transform length. This method also has
several other advantages like a simpler and more efficient memory usagehéraugt
discussion, see appendix A.

In this program three different moduli are used for the convolution and the result is@cquire
with the Chinese Remainder Theorem. This has the advantage of effective mergery usa
since the numbers don't need to be split up to smaller parts to avoid overflow. Now if the
modulus is about® and the base used is’1the maximum precision would theoretically be
about 10 billion base units or 90 billion decimal digits. However there are three preses le
than 2* of the formkN+1 only up toN=2* whenN is a power of two. Actually these three
moduli allowN to be 32%°, so the maximum transform length can be increased by 50% with a
suitable transform algorithm. This corresponds to about 220 million decimal digitstdf m
digits are desired, a larger modulus must be used. This requires use of 64 to 128-biti@rithme
or other tricks. In the 64-bit implementation the maximum precision is about 60 billios digit
and in the floating-point implementations about 790 trillion in the double version and slightly
more than a million in the short version.

After multiplication can be done efficiently, division, square root and other roots can be
calculated using Newton's iteration:

% _X+Xk(1_aXE)
k= Xk T ————

Now X converges quadratically 8",

The program includes optimized routines for multiplication and division when the multiplie
or divisor is a “short” number, in division a number with about 9 significant digits or less and
in multiplication about 450 digits (depends on your platform).

7. Performance Considerations

Although this program is optimized for optimal use of memory, you should have at least so
much memory that the transforms can be done in memory. Although the program has
optimized “two-pass” external memory transform algorithms (see [4] falgueithm), disk

speed is so slow that performance will be close to zero (it can be more than 30dwees sl
compared to the transform being done in memory). This means you should have at least about
1 free byte of memory per 1.125 decimal digits in the largest (longest) number in the
calculation. Maximum available memory is used only in power of two or three timesea pow

of two block sizes. For example if you have 32 MB of memory, you can use 24 MB of it for

the data if the program and the operating system fit in the 8 MB.
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Disk speed is crucial if the numbers are stored intermediately on disk. Withizehglast
CPU but a relatively slow disk the overall performance will suffer. Having anesif disk
cache is also highly recommended.

For some reason the Borland C++ and Visual C++ versions don't work as fast as the djgpp
versions on Windows 95/98, although the code is virtually identical. On Windows NT the
performance is about the same. The suspected reason is in how Windows 95/98 manages its
memory. For maximal speed, you should get djgpp if you use MS-DOS, Windows 95 or
Windows 98. It's free, very flexible and it optimizes well. Djgpp is downloadable from
http://www.delorie.com/djgpp/ and various mirror sites.

Note that the djgpp versions can't probably use all the memory you may have installed on
your computer. Djgpp v1 seems to be limited to allocating 64 MB and djgpp v2 may be
limited to 256 MB. If you have more memory than this and want to utilize it with apfloat, you
may have to use a Win32 version of apfloat. They should be able to use 2 GB of memory or
even more.

If you plan use a non-Intel x86-based platform you should prefer a computer that supports 64-
bit integer arithmetic in the hardware (especially multiplication). Blgtarocessors are for
example the DEC Alpha, MIPS R4000 (or greater) and the UltraSPARC. In the 32-bit gcc
implementation the basic modint class multiplication uses long long ints for nwaltiph

and remainder. This will be slow if emulated in software with a poor compiler. The 64-bit
implementation doesn't use integer division hardly at all and is really fastaiopée on the

Alpha. The floating-point versions should be preferred only on computers with extremely
good floating-point performance and abysmally poor integer performance, or when a
precision of more than 60 billion digits is required.

The general 32-bit version doesn't use 64-bit integer arithmetic but both 32-bit imeger a
floating-point arithmetic. It might be faster than the 32-bit gcc version if youepsoc
converts fast between floating-point and fixed-point data types, so you might want to
experiment.

7.1 Assembler Optimization

Hand-optimizing the code in assembler makes only sense when the compiler carzeoptimi
the code well. On RISC processors the compiler generates mostly better codeaheould
be achieved with hand-optimization, since it automatically checks instruction Solgesiud
other complicated things. Using assembler thus is useful only when special hespgeafie
instructions need to be used (like single to double-width integer multiplication).

However on older processors, which were not designed for easy and effective C compilati
like the Intel x86 series, optimizing the critical parts in assembler can tmakeogram

several times faster. This is obviously due to the small number of registers, tbactiors set
and overall ancient and inefficient processor design.
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7.1.1 Modular Multiplication

The modint class multiplication (multiplication and then remainder) in the Numberé&ilee
Transforms (see appendix A) is the most time-consuming single operation of the whole
program. That is why special attention was paid to making it as fast as possible.

Some processors, like the Intel x86 family, have special double-width multiplication a
division instructions in the hardware. That is, you can multiply two 32-bit integers atiteget
whole 64-bit result, and divide a 64-bit number by a 32-bit number, supposing the quotient
and remainder fit in 32 bits. This seems naturally to be a very good scheme for doing the
modular multiplication, and is actually the best for 386 and 486 processors.

The modulo reduction can be done very effectively in some cases when the modulus is of
suitable form. For example, if the modulupi2®*-2*+1 (which is prime and of suitable
form for radix-2 Number Theoretic Transforms up to lengfh the remainder of a 128-bit
result (from multiplying two 64-bit numbers) can be done with a few shifts, additions and
subtractions. Now suppose the result of a multiplicatiofi&+B (for example if the result is
stored in two 64-bit registerd, is the contents of the upper word d@ the contents of the
lower word). Then

2% A+B=(2"-2%+)A+(2*-1)A+ B =(2*-1)A+B(modp)
which is a shift (or two), an addition and a suttien. Then the result is about 96 bits and the
operation can be performed again, which shouldymeda result of about 64 bits. Checks for
overflows might require a few extra instructiongisIshould in general be faster than a
normal division instruction (if available), and ethely fast if implemented in special
hardware.

This scheme is implemented in the 64-bit versiothefkernel of this program, since there
exist three suitable primes for the Chinese Reneaifitieorem: 2-2+1, 2*-2*+1 and
2%-2%+1. With the two first primes the shifting schenezds to be done three times to
reduce the remainder to 64 bits. This scheme dogerk very well for 32-bit numbers. First
there exist only two primes of the suitable forff—2*°+1 and 3%-2°°+1. If more powers of
two are added to or subtracted from the modulesntimber of instructions grows and a
general-purpose division will be faster. If the dilpower of two (like € in 222-2°%+1) is
very close to the word sizefp, very many shifts are required and again thersehigecomes
slow. Second, for reasonable transform lengthsridelle power of two should be relatively
large (since must bg=kN+1 whereN is the transform length) which makes the scheme
useless, since there simply doesn't exist suitainhees.

Another drawback is that the transform length nings& power of two which is not the case
for the Winograd Fourier Transform Algorithms ($8k [10]). The WFTA is actually not
used in this program but the package includes apddnroutines for the transform.

A general division approach which enables an atyitmodulus was used in the 32-bit core
version of the program. Unlike the 386 or 486,Reamtium has a relatively fast FPU in which
the modulo reduction can be done more effectiieyntin the integer unit. Since the division
is always done by a constant, it can be replacddmultiplying by the inverse of the divisor.
Also the FPU registers have internally 64-bit pgam, which makes this scheme possible.
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Now if we want the remainder aftimesb divided bym the procedure is as follows:

Multiply a-b.

Store the result in a temporary register.
Multiply by 1/m (precalculated).

Take the integer part.

Multiply by m.

Subtract from the temporary result stored ip &e

o0k wNE

The trickiest part is step 4. The x87 series coggsors have a “round to integer” instruction,
which is very slow. When the result is known toifba suitable range (that is belof?2

which is now the case, sinaeandb are less than®9 the result can be calculated by first
adding 2° to the result and then subtractirfd. Zhis simply makes the fractional bits to be
shifted out, since the mantissa's width is 64 Bike processor's rounding mode must be first
set to truncation so that the fractional bits amgp$y discarded.

A question that arises now is that can round-offrercause the result to be incorrect. For
example, when calculating with a finite wordlenggiculator first 1/30.333 and then
multiplying 30.333=0.999 and taking the integer part, one doesn't gatexpected but 0
instead. It's easily seen that this cannot happéimei method used. Firshis always prime.
Seconda andb are less tham (and nonnegative). For the resaith, when multiplied by Ih,
to produce a decimal expansion like 0.999... tioglypeta-b should be divisible byn. This is
obviously not possible, sineris prime. So there will always be a random endugttional
part for the method to work.

Using the FPU the modular multiplication takes d@t®8Riclock cycles on the Pentium
whereas using the integer unit it would take atd@utlock cycles.

Also the Pentium's FPU can start one floating-pmistruction each clock cycle, but most
instructions have a latency of three clock cycBisce all the steps 1. — 6. above are
dependent on each other, it's possible to perforaetindependent modular multiplications in
parallel using about as much time as one moduldtiptication would take.

Also the Pentium can execute floating-point codg iateger code in parallel. In some parts
of the code where modular multiplications can'blerlapped it's possible to perform for
example modular addition in the integer unit andloiar multiplication in the FPU at the
same time. This makes some parts of the code almizst as fast.

The Pentium Pro/ll/lll/Celeron series processorsgom very well with the Pentium specific
optimizations implemented in apfloat. Although & series processors use speculative
execution, the execution units themselves are taathrally very similar to those in the
original Pentium. The raw integer and floating-pigarocessing power is quite similar to the
Pentium, overall performance per clock cycle beainghtly higher because integer, floating-
point and memory instructions can all be executédeasame time (the original Pentium can
execute a total maximum of two instructions peckloycle).

It is a good question if some P6 specific featawmdd be used to develop a more efficient
FNT algorithm. The P6 has a more efficient andyfplpelined integer multiplication unit,
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for example. The Pentium specific version alreadyids unpredictable conditional branches,
and using the new conditional move instructionseappo bring no noticeable performance
improvement over the current code. Also changiregiisted loops in the FNT to a single
loop, to avoid mispredicted branches, seems to hasgnificant effect. Currently, the
Pentium specific versions of apfloat should alwagsised with Pentium Pro/ll/lll/Celeron
processors.

7.1.2 Modular Addition and Subtraction

Addition and subtraction are also extensively usetie Number Theoretic Transforms.
Since the calculations are done modulo the modalustuitively appealing scheme for
addition is to add the operands, then compareethidtrto the modulus and if the result is not
less than the modulus, subtract the modulus framedbult. This would seem to require a
conditional jump: if the result is less than thedulois, jump past the next instruction, which
would subtract the modulus from the result.

Most modern processors have some kind of a brarehqgtion system, which predicts
whether the conditional branch will be taken or @ad the following instructions are fetched
from the predicted address into the pipeline. Tdugc is usually based on how the branch
behaved before. In a loop for example, the brasa@iways taken and thus it is not very
difficult to guess that the branch will also begakhe next time. Processor manufacturers
often report that the branch prediction logic isrect more than 95% of time. This might
very well be true, since most code on averageogd®r other parts of code which is
executed the same way over and over again. Howevere Number Theoretic Transform
the conditional branch is totally random, sincerthenbers tend to be totally random and
50% of time the branch is taken and 50% of tinseni®t. Thus the branch prediction logic
will be wrong about 50% of time. Most processoks thave a branch prediction unit behave
very badly when the branch prediction logic is wyol can take ten clock cycles to clear the
whole pipeline and fetch new instructions from tlerect address. Thus it would make sense
to avoid a random conditional jump at all costs.

Processors that were designed to be superpipdlikedhe DEC Alpha series) have
conditional move instructions that eliminate thisckof situations where the pipeline is
bound to stall. Since the compiler optimizes theecto use these instructions, the problem
mentioned above is obviously avoided. However oftecessor designs, like the Intel x86
series (except the Pentium Pro and Pentium lIdb)'t have this kind of instructions. The
modulo calculation can be done without branching,ittakes a few extra instructions. The
procedure for modular addition on the x86 processor

1. Add the operands.

2. Compare the result with the modulus. If the ltasigreater than or equal to the modulus,
the carry flag is set.

3. Subtract the carry flag from zero. Now the resutero if the result of the addition was
less than the modulus, otherwise the binary reptasen is all ones.

4. Logical and the result from step 3 with the maduThe result is the modulus if the result
of the addition was not less than the modulus,retise zero.

5. Subtract the result of step 4 from the resuthefaddition.
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For modular subtraction the procedure is similat,tbe carry flag is automatically set if the
result of the subtraction is less than zero andhtbdulus (or zero) is added to the result of
the subtraction.

The operations above are highly dependent on ghein. &Gince the Pentium executes two
independent instructions on each clock cycle, tteeacan be made about twice as fast when
modular addition and subtraction are calculatgoiirallel. This is always the case in the
Number Theoretic Transforms.

7.1.3 A Note for Pentium and “Pentium” Users

Please note that the assembler optimization foP#rgium processor is really done
exclusively for the genuine Pentium. There are nRaytium (or 586) clone processors out
there (NexGen, Cyrix, AMD etc.) which may behaveally differently from the Pentium.
Apfloat's assembler optimization uses the Pentiimstsuction pairing ability as effectively
as possible. The code might be far less efficiammother processor. Also most of the clone
586s have a slower floating-point unit than thetidem (and possibly a faster integer
multiplication unit), so it's highly recommendedaiso test the 486 version of the program
and see which one runs faster if you have a nal-h&6/686/whatever processor.

7.2 Hardware without a Double-Width Multiplier

Doing modular multiplication and especially the @#8e Remainder Theorem effectively
essentially requires hardware capable of doing igewith integer multiplication (e.g. a
multiplier that produces the full 64-bit producttefo 32-bit integers). Since standard C gives
no simple tools to do this, the obvious solutiorulgidoe to use assembler. When a general
implementation in C is required, there is a workah however.

The standard multiplication operator gives triwidhe lower word of the result of the
multiplication. Acquiring the upper word is a hiickier. Now, the floating-point unit of the
computer always calculates with the most signifi¢ars of the numbers used. So the upper
word of the product can be calculated easily byeaimg the operandi to doubles,
multiplying them, subtracting the lower word of f@duct (from the integer multiplication),
multiplying by 232 and converting to an integer. Note that it's ngagsto subtract the lower
word of the product from the product, since we diombw how the computer will round the
values used. If it truncates, it's not necessanstMomputers round to the nearest value,
however, so if almost all of the lowest bits of fireduct are ones, the resulting upper word
might be too big (since the fractional one bits'tigat truncated, but rounded upwards). An
even better solution is to only subtract the magticant bit of the lower word of the
product. The round-off problem can't happen ifaéso, so this way we avoid subtracting too
much from the product. Some computers seem to rauntbers very unpredictably
sometimes.

Since most modern computers have relatively fastithg-point units, this scheme can be
quite fast. The integer and floating-point code eaen be executed in parallel in some cases.
The only bottleneck is converting integers to destdnd vice versa.
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When suitable moduli are chosen, double-width mliti@tion can be quite well avoided in
modular multiplication. Since we're only interestedhe remainder (which fits in, say, 32
bits), it would make sense to only use the leagtiitant 32 bits in the whole operation. We
can get the lower 32 bits of the product from serpteger multiplication. Then we can
approximate the quotient of the product dividedhi®ymodulus by converting the operandi to
doubles and multiplying by the inverse of the moadulconverted to a double). The inverse of
the modulus should be slightly rounded down. Nobtisact the modulus (integer) times the
approximated quotient (converted to an integemnftbe product, using only the lowest 32
bits. Since the quotient was approximated and plyssne too small, the result might be
about twice the modulus. So when the moduli arsehdo be less tharf'2we can still get

the remainder, since the result now fits in 32 adsurately. Simply subtract the modulus
once if necessary.

7.3 Vector and Parallel Computers

This program is not really designed to be usecetar or parallel (super)computers. It's
designed for RISC processors and hierarchical eaaBed memory systems, typically
personal computers and workstations. Performancecior or parallel computers will
probably be close to scalar computers.

A multithreaded version of the NTT is available smme platforms. This constitutes only a
part of the program execution time, so it will eotable perfect scalability on SMP
(symmetric multiprocessing) systems. However, dusth be possible (but not very easy) to
implement the CRT, addition/subtraction etc. oreetor or parallel computer. If disk-based
numbers are used, the disk transfer speed willginlglremain the bottleneck, even if you
have a very high performance disk system, suchRaslB farm. Feel free to experiment.
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Appendix A: Number Theoretic Transforms in Convolution

This text assumes the reader has some basic krngavédobut elementary number theory, like
modulo arithmetic. For a good textbook on the stthjead [1].

The Discrete Fourier Transform (DFT) of tRdong sequence(n) is defined as

N-

X (k) = x(m)w* (1)

n=0

LN

For an ordinary Fourier transforv/is defined as

21

W=¢gn (2)

wherei is the imaginary unit. However, at present, we mot assume anything abo The
inverse transform is

K = Y X (W™ ©

At present we are not interested in the transfasedfi but a convolution. The cyclic
convolutionc(n) of two sequences(n) andb(n) of lengthN is defined as

c(n) =a(n) * b(n) = Z__‘,fﬁl(k)b(n -k (4)

assuming thaa(n) andb(n) are treated as cyclic sequences, tha{4)=b(N-1) etc. Now the
convolution can be computed more efficiently in Boairier domain. The convolution
corresponds to linear (element by element) mudigtion in the Fourier domain. That is, to
calculate the convolution, first take the Fourransforms of the sequences to be convolved,
multiply the corresponding elements in the transfand then take the inverse transform.

The Discrete Fourier transform (1) and its invéBecan be calculated using the Fast Fourier
Transform in aboullogN operations instead of tfN¢ operations that the direct calculation
would require. IfA(k) andB(k) are the Fourier transforms of the sequem¢ssandb(n), the
Fourier transfornC(k) of the convolution sequencgn) is

C(k) = A(k)B(k) (5)

andc(n) can then be calculated with the inverse transfdfow to see what requirements the
numberWW must meet in general for the cyclic convolutiomiark, substitute (1) to (5):

C(9 = ARB() = Y alw* . b())w* ©)

then use (3):
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o(n) = ZC(k)W

o 2A(u)w'kzs(1)w'k ™

=Z )ZB(J) > e

Now this is obviously equal to equation (4) if amy if

N-1

sz(Hj—n) - N5(| + J — n) (8)

k=0

wheredn) is the discrete delta function (1 whex0 and O otherwise). So the sum in (8)
would beN whenj=n—i and 0 otherwise. Now let's look at

N-1 )
2 Wk ©)
k=0
This is obviouslyN whenj=0. Otherwise multiply it by @W), the result should be zero:
N-1
A=W D Wk =W +W! +W? + i
k=0
-W! w3 — . =WIND N (10)

=1-w™N =0

SoW"N=1. Sincd was arbitrary (in fagez0 (modN)), obviouslyW must be amth root of

unity (alsoWis not 1 in general). In the “normal” Fourier tséorm this is of course true as in
equation (2). IWis in general an integer or some rational or ne@hber, this criterion

clearly cannot be satisfied. However, a suitAlean be found in the field of integers
modulop whenp is a prime of the forrp=kN+1 wherek is an integer anl is the transform
length. In this case the Fourier Transform is celeNumber Theoretic Transform (NTT). For
a more thorough discussion about wihmust bekN+1 refer to appendix B.

So Number Theoretic Transforms are just ordinagcEite Fourier Transforms but they are
done in a different number field. Most of the folamiand algorithms that apply for the DFT
also apply for NTTs. The most interesting propestgrobably that the NTT can be calculated
using a “fast” algorithm (Fast Number TheoreticAg@rm, FNT), like the DFT can be
calculated using the Fast Fourier Transform (FF®).a rigorous development of the FFT
algorithm(s), see [7]. Just remember At now an integer and all the calculations areedon
modulop. For a clue about FFT implementation, see [3].

Number Theoretic Transforms have several advanagasthe usual complex Fourier
Transforms:

- The transform is obviously real, so when transiog/convolving real data no special
tricks are required to avoid using double the s@ackwork needed.



24

- Since all used numbers are always integers, modroff errors can occur. This makes
possible to transform very long sequences (Nk&*°) with standard 53-bit resolution.
Also all “twiddle factors” in the FNT algorithms gde calculated efficiently using
recurrence relations.

- The computation can be done “in parts” and thalfiesult recovered using the Chinese
Remainder Theorem. This is useful if the resultrtboes (the result numbers are only
calculated modul). Just do the same calculation modulo severadmifft primes of the
suitable form and use the Chinese Remainder Theoretine results. (For an explanation
of the Chinese Remainder Theorem and a descriptidhe implementation see appendix
C.)

There are also some disadvantages:

- The transform itself has no use (it has no playsieaning like the Fourier Transform
represents frequency). So Number Theoretic Tramsf@re mostly useful for convolution
only.

- Long integer arithmetic is slower than floatingimt arithmetic on most computers.

If one happens to have a computer with really poog integer multiplication/division
performance but relatively good integer additiobtsaction performance, one might want to
use an algorithm with minimum number of multiplicas for the calculation of the NTT.
These are of course the Winograd Fourier Transfsigorithms (WFTA) ([9] and [10]). The
algorithms can be used as is, but since they imviiultiplications by cosines and sines
(actually always-sin), some attention must be paid to what theyespond to in the number
theoretic field. A hint to this is given in [13].

For example, if we want to calculate cosa@di-sin30 we must have a field that has a 12th
root of unity (since 30is one twelfth of the full circle). Sp=k-12+1. Now letwW be a 12th

root of unity in the field of integers modubo If we would be in the field of complex
numbersW would obviously be"®=cos30+i-sin30. So we might assume that in the
number theoretic field also must hald=cos30+i-sin30. Also it would make sense that
always cos+sir’x=1 or in other words cés—(i-sinx)?>=1. Note that there doesn't necessarily
exist a fourth root of unity (correspondingijan the number theoretic field.

Now if Wis theNth root of unity and

W icosz—n+isin2—n
N N

(11)

then (after simple algebraic manipulation)

2
cos—zniw 1
N W
2 _
isinz—ﬂiw 1
N W

Trying these formulae out with the WFTA algorithorse can see that they really work.

(12)
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Since most computers today are cache-based syterRdTs (like any Fourier Transforms)
can be calculated more efficiently with the “fodeys’ algorithm [4]. For a short proof see
appendix D. Doing the transform in shorter bloaksuits in high data locality and thus a
better cache hit rate.
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Appendix B: Primitive Roots

For a more rigorous and general discussion, seexample [2].
This text concentrates on primitive roots of prinoesy for reasons of simplicity. From
elementary number theory we know that for all neazetegersa, whenp is prime

a”" =1(mod p) (13)
(From now on we just might suppose that the magoiis prime). For all prime moduli
there exists a primitive root(actually many). A primitive roatis an integer that

when the integex goes froml to p—1,
thenr* (modp) goes through all the numbers p=1) in someorder.

The order of an integeris the smallest positive integefor whicha*=1 (modp). So the
order of a primitive root (modulo a prinpg is p—1.

Sincea” =1 (modp) always, it is obvious that if the orderafs less thap-1, the order
should dividegp—1. To see this, notice that when you start myfitngl 1-a-a-a-... (modp) when
the result of the multiplication is 1, the sequesi@ts over again. And when you have done
the multiplicationp—1 times, the result must be 1. So the orderraist dividep—1.

To test whether a numbatis a primitive root modul@, we want to know whether the order
of aisp-1 or less. The first thing to do is to facpesl. This can be done effectively (when
p<2%?) with a precalculated table of primes less th&rafd simple trial division. Then if

a't z1(modp) (14)

for all factorsf of p—1,ais a primitive root modul@. Note that one only has to do the test for
all prime factors op—1. There's no need to checlaifo any smaller power is 1, since raising
the 1 to some higher power is still 1, so one cahgheck the highest possible powers.

There are lots of primitive roots for all primes,fsnding one by directly testing numbers
should not be too difficult. An easy approach it prime numbers=2, 3, 5, 7, ...

An example:

Let p=2%-2°°+1. Thenp is of the formkN+1, that is needed for doing (Fast) Number
Theoretic Transforms up to lengix2?°. The factorization op-1 isp-1=2°3%5.7-13.

Now start testing numbees2, 3, 5, 7, ... and see if
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a'z #1(mod p)
a’s £1(modp)
ap?_lssl(mod 9)) (15)
ap7_1$1(mod 9))

a% #1(mod p)

(the firsta for which this occurs ia=19).

A root W of orderN, that is, W'=1 (modp), butW1 (modp) when 0€<N, can be
calculated withAer® (modp), whenp=kN+1. SoW'=r=r""=1 (modp).

Note that now\V? = —1 (modp), so the decomposition of the Number TheoretinFfarm

to a (radix-2) Fast Number Theoretic Transformlyeabrks (just like the FFT). To see this,
note thatW = 1 (modp), and soMY? = +1 or —1 (mog). ButW¥? can't be 1, since thaff
would be a root of ordé¥/2, and it isn't.
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Appendix C: The Chinese Remainder Theorem

This is basically the Chinese Remainder Theorermorilkgn from [6].

The Chinese Remainder Theorem (CRT) gives the artsvibe problem:
Find the integek that satisfies all the equations simultaneously:

X =r,(modp,)
X =r,(modp,)

X =r,(modp,) (16)

X=r,(modp,)

We will assume here (for practical purposes) thathodulip are different primes. Then
there exists a unique soluti@mmodulop;-p,-..-pn. The solution can be found with the
following algorithm:

Let P=p;-p2-....pn.

Let the number3;...T, be defined so that for eadh (k=1, ...,n)

P 1 =1modp,) (17)

k

that is, Ty is the multiplicative inverse ¢¥/px (modpy). The inverse o& (modp) can be
found for example by calculatira]? (modp). Note that-a”“=a""=1 (modp).

Then the solution is
P P P
XE—riT1+—r,To+...+—r, To(ModP) (18)

1 p2 pn

The good thing is that you can calculate the facféipy)- T« beforehand, and then to gefor
differentry, you only need to do simple multiplications anditidns (supposing that the
primespy remain the same).

When using the CRT in a Number Theoretic Transfdahm,algorithm can be implemented
very efficiently using only single-precision aritletic whenr<py for all k. Now calculate first
P/pkx andTy for all k (note that this only needs to be done once). Tadulate

Y, =rT.(modp,) (19)

for all k. Now the solution is

XSyt y, 4y, (MOdP) (20)
pl pZ pn
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Note that multiplying a multiprecision numbefp, with a single-precision number only
requires single-precision arithmetic (supposingryrardware does double-width
multiplication). Also the reduction modukin the final calculation obviously only needs
simple compares and subtractions, siiRi@{yx is always less thaR.
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Appendix D: The “Four-Step” FFT Algorithm

The Discrete Fourier transforK{k) of the data(j)
N-1
X (k) = > Wk x(j) (21)
j=0

can be computed more effectively in computers wittache memory with the “four step”
algorithm. Assume that the transform lenijtiban be factored td;N,. Now treat the data
like it was stored in &l;xXN, matrix. Assume that the data is stored in theim#te “C” way,
that is the matrix eleme#ny (rowj, columnk) is stored at linear memory addr@¥st+k.

The algorithm is as follows:

1. Transform each column, that is Ngtransforms of lengtiN;.

2. Multiply each matrix element; by WX the sign being the sign of the transform ¥d
theNth root of unity of the number field used.

3. Transpose the matrix.

4. Transform each column, that is Motransforms of length,.

Now the proof that the algorithm actually works:

From now on we'll only use linear addresses ofitia.

Step 1.

In columnk; of the matrix a transform of lenghh is performed. So the appropridgh root
of unity for that transform 8. So the element in rok and columrk, becomes

Ni—1

Xy (k N2+ko) = Z;,)W‘MNZ X(J:Nz +k3) (22)
e
Step 2.
Multiplication.
X2 (kN2 +k2) =W X1 (ki N2+ ko) (23)
Step 3.
Transposition.
X3(ka N1t ki) = X2(kiN2+ko) (24)

Step 4.

Again in columrk; of the matrix a transform of lenghly is performed. So the appropriate
N.th root of unity for that transform &/,
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N2-1
Xa(kaNitks) = Y WikeN: X5 (j, Nyt ko) (25)
1,0
SubstitutingXs(j2N1+k;) from step 3 yields (noting that ndw=j»)
N2-1
= ZszkZNl)(z(klNz'*' Jz) (26)
1,70

Again substituting<z(k;N2+j1) from step 2 yields

No-1
= ZWj2k2N1+j2k1X1(k1N2+ Jz) (27)

1,70

Finally substitutingX;(kiN2+j1) from step 1 yields

No—1 Ni—1
= ZWJZKZNMZMZleklN2 X(j1N2+ 12) (28)
i2=0 J:=0

which is by changing the order of the summation

N1—1N>-1
=2 2 W lahiax(j Na + ) (29)
170 j,=0
Note that
(k2 N1+ k)(J; N2+ J,) = j1kaNi N2+ j kN2 + jokaNat joka (30)
and since\V™=\WN=1 alsow*"">=1 and thus the final result can be presented as
N1-1Np-1 ) )
Xa(kaNit+ky) = Z ZW(kzN1+k1)(llNz+Jz) X(j1N2+ Jz) (31)
j1=0 j,=0

Now this is exactly the same as the original DigcFeurier Transform, when we note that
the summation is just the same, only factored twparts which comes from factorihgto
N1iN2. Simply markk with k,N;1+k; and note thgtgoing from 0 td\N-1 is equivalent tpNx+j»
with j; going from 0 tdN;—1 andj, going from O td\—1 for eachj; in the inner loop. SK(k)
is equivalent to<s(koN1+k;). H

[4] has a more thorough discussion about the sut$eene ideas that were used in this
program are for example the “six-step” method, \gényilar to the “four-step” method:

Transpose the matrix.
Transform the rows.
Multiply by W,
Transpose the matrix.
Transform the rows.
Transpose the matrix.

ok wNE

This method has the advantage that the short transfare done in linear memory blocks.
This is a requirement for any cache-based mematgsyto function effectively. The matrix
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transposition is a very fast operation and candsopmed in place whel;=N, or N,=2N;

and the array fits in memory. When doing convolutimly, one can save the last
transposition in the forward transform and thet firansposition in the inverse transform. [4]
describes the algorithm carefully.

A disk-based “two-pass” transform algorithm desedlin [4] was also implemented. It
requires only two passes through the data setsatiboretically very effective. The
implementation avoids transposing the whole mattben doing convolution. This is
accomplished by first readingyxb blocks into memory so that the blocks just fitnemory.
The block is transposed, each row is transforntexbtock then transposed again and written
back to disk. After the columns the rows are tramaed. In the inverse transform the order is
reverse.

However, the “two-pass” algorithm is required omlyen the whole array can't fit in the
memory and thus the transform length will be vagy n practice the algorithm is so slow
for disk storage that it's useless. (Actually tigathm is not intended for disk storage at all
but only slower hierarchical memory with seek timesl transfer rates more typical for
memory chips than disk. This is mentioned in [4].)
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Appendix E: Algorithms fort

These are probably the most efficient algorithmiscedculatingrt known to man. Proofs and
convergence analysis can be found in [8]. All ciltans must be done with the desired
precision of the final result.

The Borweins' quartic algorithm:
Yo= \/E -1
a0 =6-4/2
_Q-y) Tl (32)
Yin (- yi.)—1/4+l
Yir @ Vi * Vi)

— 4 2k+3
Ak+1 — Ak (1+ yk+1) -2 *

Now ax approaches frquartically, that is the number of correct digifgproximately
guadruples in each iteration.

The Gauss-Legendre algorithm:

1
4 (33)

b1 = +/ ax bx

tea =tk — A (ax — ak+1)2

Tis then approximated bgb)%(4t). The algorithm has quadratic convergence thtiteis
number of correct digits approximately doubles dsatation.

The Chudnovskys' algorithm:

1_ 12 & v (6K)! 13501409 545140134 34)
T 640320 = (k!)* (3K)! (640328)"

The series must be calculated using the binarttisglialgorithm to be efficient. A good
explanation of the binary splitting algorithm caamfound for example in [14].
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2.30
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64-bit version for x86-64 (AMD-64 / EM64T) gcc.
Minor fixes.

February 22nd, 2003

Use new Standard Template Library (gigstream> instead okiostream.h>
64-bit version for 1A-64 (Itanium) gcc.

Factorial function.
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Minor fixes and performance improvements.

January 3rd, 2003

Fixes for gcc 3.3 compatibility.
Fix post-increment/decrement vs. pre-increntimlement operators.
Other minor fixes.

August 11th, 2002

Minor bug fixes.

September 9th, 2001

Fixes for gcc 3.0 compatibility.

April 17th, 2001

Minor bug fixes.

October 22nd, 2000

64-bit versions for Borland C++ and MicrosofsWal C++.
Minor bug fixes and performance improvements.

August 13th, 2000

Parallel processing calculation program.

Multithreading FNT algorithms for Win32 and Bothreads.

Saving and loading numbers to/from disk ushestvapto()  andswapfrom()
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Some bug fixes and small performance improvesen
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Various bug fixes and small performance improgats.
64-bit version for Linux.
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1.40
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1.32

July 7th, 2000

- Stream input operators.

- Modulo power function with a sample RSA encryptapplication.
- Various bug fixes and some performance impraesn

April 7th, 2000

- Some performance improvements.
- Versions for Microsoft Visual C++.
- 64-bit version for djgpp.

- Some bug fixes.

February 27th, 2000

- Improved the multiplication of short numberamhatically.

- Calculatingrtis more than two times faster now with the Chudhg\brothers'
binsplit algorithm.

- Some minor bug fixes.

June 16th, 1999
- Some critical bug fixes.

October 8th, 1998

- Added integer and rational data types.

- Several bug fixes.

- Hopefully some portability improvement, espégiaith Borland C++ 5.02 and gcc
2.8.1.
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September 15th, 1997 (Not publicly released)

- Added a Win32 version with a Windows GUI.

- Optimized the code for bcc32.

- Minor bug fixes and performance improvement.

July 5th, 1997

- The transform length can have a factor of thifeie can make the program
sometimes 25% faster.

- fmod() andmodf() functions.

- More portable.

October 30th, 1996
- The initialization functionapinit() andapdeinit() are now called
automatically at program start and exit.

October 10th, 1996
- Fixed problems caused by the C++ complex typehvis a template class in the
newest ANSI C++ draft.
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Added tapfloat class to store transformed atéloThis makes multiplying by
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Made apfloat faster. Especially the Pentiunsiogr is about 50% faster and the
Alpha version seems to be almost 200% faster.
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July 1, 1996
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- Complex number arithmetic.
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- Floor and ceiling functionsidor(apfloat) andceil(apfloat) ).
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May 11, 1996

Fixed a bug in the character string apfloat cocsor.

May 6, 1996

Fixed a minor bug in the character string apftmatstructor.

March 20, 1996
Initial release.



