Package org.apfloat.internal
Class LongNTTConvolutionStepStrategy
java.lang.Object
org.apfloat.internal.LongElementaryModMath
org.apfloat.internal.LongModMath
org.apfloat.internal.LongNTTConvolutionStepStrategy
- All Implemented Interfaces:
Parallelizable,NTTConvolutionStepStrategy
public class LongNTTConvolutionStepStrategy
extends LongModMath
implements NTTConvolutionStepStrategy, Parallelizable
Steps of a three-NTT convolution for the
long type.
This class implements the details of the element-by-element multiplication
and element-by-element squaring of the transformed elements.The in-place multiplication and squaring of the data elements is done using a parallel algorithm, if the data fits in memory.
All access to this class must be externally synchronized.
- Since:
- 1.7.0
- Version:
- 1.9.0
- Author:
- Mikko Tommila
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionprotected ParallelRunnablecreateMultiplyInPlaceParallelRunnable(DataStorage sourceAndDestination, DataStorage source, int modulus) Create a ParallelRunnable for multiplying the elements in-place.protected ParallelRunnablecreateSquareInPlaceParallelRunnable(DataStorage sourceAndDestination, int modulus) Create a ParallelRunnable for squaring the elements in-place.voidmultiplyInPlace(DataStorage sourceAndDestination, DataStorage source, int modulus) Linear multiplication in the number theoretic domain.voidsquareInPlace(DataStorage sourceAndDestination, int modulus) Linear squaring in the number theoretic domain.Methods inherited from class org.apfloat.internal.LongModMath
createWTable, getForwardNthRoot, getInverseNthRoot, modDivide, modInverse, modPow, negateMethods inherited from class org.apfloat.internal.LongElementaryModMath
getModulus, modAdd, modMultiply, modSubtract, setModulus
-
Constructor Details
-
LongNTTConvolutionStepStrategy
public LongNTTConvolutionStepStrategy()Default constructor.
-
-
Method Details
-
multiplyInPlace
public void multiplyInPlace(DataStorage sourceAndDestination, DataStorage source, int modulus) throws ApfloatRuntimeException Description copied from interface:NTTConvolutionStepStrategyLinear multiplication in the number theoretic domain. The operation issourceAndDestination[i] *= source[i] (mod m).For maximum performance,
sourceAndDestinationshould be in memory if possible.- Specified by:
multiplyInPlacein interfaceNTTConvolutionStepStrategy- Parameters:
sourceAndDestination- The first source data storage, which is also the destination.source- The second source data storage.modulus- Which modulus to use (0, 1, 2)- Throws:
ApfloatRuntimeException
-
squareInPlace
public void squareInPlace(DataStorage sourceAndDestination, int modulus) throws ApfloatRuntimeException Description copied from interface:NTTConvolutionStepStrategyLinear squaring in the number theoretic domain. The operation issourceAndDestination[i] *= sourceAndDestination[i] (mod m).For maximum performance,
sourceAndDestinationshould be in memory if possible.- Specified by:
squareInPlacein interfaceNTTConvolutionStepStrategy- Parameters:
sourceAndDestination- The source data storage, which is also the destination.modulus- Which modulus to use (0, 1, 2)- Throws:
ApfloatRuntimeException
-
createMultiplyInPlaceParallelRunnable
protected ParallelRunnable createMultiplyInPlaceParallelRunnable(DataStorage sourceAndDestination, DataStorage source, int modulus) Create a ParallelRunnable for multiplying the elements in-place.- Parameters:
sourceAndDestination- The first source data storage, which is also the destination.source- The second source data storage.modulus- Which modulus to use (0, 1, 2)- Returns:
- An object suitable for multiplying the elements in parallel.
-
createSquareInPlaceParallelRunnable
protected ParallelRunnable createSquareInPlaceParallelRunnable(DataStorage sourceAndDestination, int modulus) Create a ParallelRunnable for squaring the elements in-place.- Parameters:
sourceAndDestination- The source data storage, which is also the destination.modulus- Which modulus to use (0, 1, 2)- Returns:
- An object suitable for squaring the elements in parallel.
-